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We consider the monomer-dimer surface reaction without surface diffusion for various dimer adsorp-
tion mechanisms, described below. After a dimer impinges “end on” at an empty site, its bottom atom
remains there while its top atom searches N = 1 sites, either in a local neighborhood (N-local models), or
randomly located on the surface (N-random models), to find a second empty site. If one is found, the di-
mer can then adsorb dissociatively. The N-local models have a reactive window of finite width in the rel-
ative impingement rates, bordered by poisoning transitions, whereas the N-random models exhibit true
bistability. As N increases, the reactivity is either strictly or effectively confined to relative impingement
rates close to the stoichiometric ratio. We precisely analyze the limiting behavior as N— 0.

PACS number(s): 05.40.+j, 82.65.Jv, 82.20.Mj

I. INTRODUCTION

It is instructive here to consider first a rather general
class of surface reaction models [1], involving molecules
A, of m A atoms and B, of n B atoms, which include
the following steps:

A, (g)+mE—->mA(ads) ,
B,(g)+nE—nB(ads) ,
A (ads)+B(ads)— AB(g)+2E .

Here (g) represents a molecule in the gas phase, (ads)
represents an adspecies, and E represents an empty ad-
sorption site. We assume that A4,,(g) impinges on the
surface with rate P, and B,(g) with rate Pz and that
these species dissociatively adsorb if they find appropriate
ensembles of empty sites. We normalize P, + Py to uni-
ty. Adjacent adsorbed species of different types react to
form AB(g) at rate k, which could be infinitesimal, finite,
or infinite. In general, there may be adspecies mobility.
For a steady state to exist, since the removal rates for
species 4 and B are necessarily always equal, it follows
that the adsorption rates for both species must also be
equal. It is important to note here the following distinc-
tion. The impingement rate is the rate at which adsorp-
tion events are attempted (successful or not), while the ad-
sorption rate is the rate of successful adsorption attempts
multiplied by the number of atoms in the adsorbing mole-
cule.

If m =n and both 4,,(g) and B,,(g) adsorb randomly
on identically shaped configurations of empty sites, then
clearly the ratio of the adsorption rates for species 4 and
B is exactly equal to the ratio of the impingement rates
(independent of the statistics of the adlayer). Therefore a
reactive steady state is only possible if P, =Pp. If there
is an imbalance in impingement rates, then the species
with the higher impingement rate will poison the surface
[2]. This behavior is well known for the monomer-
monomer or A + B reaction model (m =n =1). Here it
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is also known that no true steady state exists even when
P, =Pg, but that the system slowly poisons as domains
of A(ad) and B(ad) grow in size [3,4]. The behavior is
analogous to that of the two-dimensional (2D) Voter
model [4]. Presumably poisoning also occurs when
P =Py for m =n > 1, except that the poisoned state will
be a nontrivial jammed state incorporating empty sites,
but no adsorption ensembles of m =n empty sites [2].
Also the kinetics of poisoning may differ from when
m =n =1, but will no doubt still be slow. In contrast, if
one introduces symmetry-breaking cooperativity into the
adsorption process, then in general the ratio of the ad-
sorption rates will depend on the adlayer statistics. A
reactive steady state can potentially be achieved for a
range of P, Py by adjustment of the adlayer-statistics.
The width or extent of this reactive regime clearly van-
ishes as one “switches off”” the cooperativity. A key ques-
tion is then whether this width vanishes continuously or
rather at a nontrivial “tricritical point” for some nonzero
degree of cooperativity. Zhuo, Redner, and Park [5]
studied a cooperative monomer-monomer reaction,
where the adsorption rate of A4 (g) at empty sites with n
neighboring A(ads) is now given by r"P ,, but B(g) ad-
sorption remains random at rate Pz. They suggested the
existence of a tricritical point at some r =r, <1, below
the » =1 noncooperative limit [5].

For m+n, invariably the ratio of adsorption rates for
species A and B will depend on the adlayer statistics.
Thus a reactive steady state can potentially be achieved
for a range of P, again by suitable adjustment of the ad-
layer statistics. This is well known for the most inten-
sively studied case of the monomer-dimer or 4 +B, re-
action model where m =1, n =2, and B,(g) adsorbs on
adjacent pairs of empty sites [6,7]. Within the context of
modifying the extent of reactivity, we comment on
behavior in the reaction-limited regime as kK —0. When
k =0+, the surface is completely covered. After each
reactive removal of an adjacent AB pair, the created
empty pair is immediately filled either by a single B,(g)
species or sequentially by two A4 (g) species. Clearly here
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the adsorption rates are simply in proportion to the im-
pingement rates [8,9] and are equal when P ,:Ppz=1:4. In
this case, the model exhibits slow poisoning due to coars-
ening of domains of 4(ad) and B(ad), analogous to the 2D
Voter model, and the monomer-monomer model when
P,=Py (see Ref. [4]). For the case of immobile ad-
species, the reactive window narrows with decreasing k
and was first proposed [9] to vanish at a nonzero tricriti-
cal value of k. However, more recent studies [4,10] sug-
gest that its width vanishes continuously as k —0.

Here we consider the effect on the monomer-dimer or
A + B, reaction model of modifying the standard dimer
adsorption mechanism. We consider only immobile ad-
species and instantaneous reaction of adjacent AB pairs
(k = o). In the standard model, one randomly picks an
empty site and then randomly selects one neighbor, ad-
sorbing if it is also empty. In the modified models, we
search for a second empty site among a local neighbor-
hood of N =1 sites (N-local adsorption) or from among
N =1 other randomly chosen sites on the lattice (N-
random adsorption). In either case, as N — «, a second
empty site will certainly be found, so the absorption rates
for A(g):B,(g) are in the proportion P 4 :2Py. Thus the
steady-state reaction cannot be sustained if P ,#2Py, as
N— . Here we provide a detailed analysis of the asso-
ciated continuous decrease in the width of the reactive
window for N-local models and of the continuous shrink-
age of the regime of significant reactivity for N-random
models, with increasing N.

II. MODEL DESCRIPTIONS
The monomer-dimer surface reaction model
A(g)+E— A(ads) ,
B,(g)+2E—2B (ads) ,
A(ads)+B(ads)— AB(g)+2E

mimics CO oxidation on single crystal substrates, with 4
corresponding to CO and B, to O,. Here A4(g) requires
a single empty site to adsorb and B,(g) requires an empty
pair, which will not necessarily be adjacent in our
prescriptions below. We assume that only adjacent 4B
pairs react and that this occurs instantaneously. Below
we also set P, =y and Pz =1—y. We shall consider only
a square lattice of adsorption sites.

A. N-local adsorption

The dimer adsorption mechanism in these models can
be described as follows. An empty site is chosen at ran-
dom and then a local neighborhood of N sites is sampled
in a fashion prescribed below, adsorption of B,(g) occur-
ring if at least one empty site is found in this neighbor-
hood. For N =1, one nearest neighbor is chosen at ran-
dom and our model corresponds to the standard Ziff-
Gulari-Barshad (ZGB) monomer-dimer reaction model
[6]. Next we discuss the case N =4. Here all four (hence
N =4) nearest neighbors of the first empty site are
checked for vacancies. If any are found, then one is
chosen randomly to accommodate the second B(ad). The
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N =1 model is equivalent to randomly selecting adjacent
pairs of empty sites, which might be thought of as dimer
adsorption through a horizontal transition state. In con-
trast, the N =4 model more reflects adsorption through a
vertical transition state, where the lower end of the dimer
attaches to an empty site (at least transiently), while the
upper end searches for an empty neighbor. See Ref. [11].
Dimer adsorption in the N =8 model proceeds as for
N =4, but if a second empty adsorption site is not found
in the first nearest neighbors, then the second nearest
neighbors are checked for vacancy. If any are found,
then one is chosen randomly from them. For the N =12
model, if no vacancies are found among the first and
second nearest neighbors, then the third nearest neigh-
bors are checked and one is selected at random (if any are
found). The next case in this sequence where one
searches “shell by shell” for a second adsorption site is
N =20 because there are eight fourth-nearest neighbors
on a square lattice [Fig. 1(a)]. Models for intermediate-N
values could also be considered, as well as various other
prescriptions of neighborhoods and searching procedures.
For the N =1 ZGB model, simulations have shown
[12,13] that a reactive steady state exists only for
»1=0.3906 <y <y,=0.5256. There is a continuous tran-
sition to a B-poisoned state as y decreases below y; and a
discontinuous transition to an A-poisoned state as y in-
creases above y,. These poisoned states, where every lat-
tice site is occupied with A4 or B, are ‘“adsorbing” since
there is no spontaneous desorption of adatoms. One
might expect this general picture to apply for N > 1, but
that the location of these transitions shift and the width
Q=y,—y, of the reactive window decreases with in-
creasing N. We provide a detailed analysis of these
trends in Sec. III, but first present some analytic results.
Because A4 (g) only needs a single empty site to adsorb,
the (total) adsorption rate for 4 is Y 4(T)=yE, where E
denotes the concentration of empty sites on the surface.
The (total) adsorption rate for B is Ygz(T)=2(1—y)EQ,
where Q is the conditional probability that if a single
empty site is found, then another empty site will be found
in the prescribed neighborhood of N sites. Note that Q
depends only on the size N and on geometry of the neigh-
borhood, but not on the order in which the sites are sam-
pled. The presumably weaker dependence on this order
will appear in the hierarchic rate equations for the proba-
bilities for multisite configurations. Since the reaction
mechanism guarantees that the removal rates of 4 and B

N=4 N=8 N=12 N =20 N=24 N=238
O 000 00000 O
000 000 00000 00000 O

O®0 O®0 0O0®00 00®00 00®O0O0 O0O®00
000 000 00000 00000 O
@) 000 00000 o}
(a) (b)

FIG. 1. (a) “Adsorption neighborhoods” in the N-local mod-
els for various N. If the center site (indicated by ® ) is empty,
then the bottom B atom in the dimer lands there while the top B
atom searches the other sites (indicated by O) for a second va-
cancy. (b) An alternative geometry for the N =8 model.
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are equal, in a steady state, one must have
Y (T)=Yg(T). This implies that either E =0 (poisoned
state) or Q =y(1—y)~!/2<1. Since the second condi-
tion cannot be satisfied for y >Z, it follows that only
poisoned states exist in this region. Furthermore, since
trivially ¥ 4(T)> Yp(T) for y > 2, the system will always
evolve to an A-poisoned state (unless initially B
poisoned). Consequently, one has y; <y, <Z.

Next consider evolution of the model through non-
poisoned states for fixed y <. Since Q—1as N— o, it
follows that Y5(T)> Y 4(T), so the system must evolve to
a B-poisoned state. This implies that either y,—2Z as
N — o or perhaps y, remains below 2 as N — o but the
B coverage approaches unity (and the reaction rate van-
ishes) in the reactive steady state. In either case, one
necessarily has y, —Z as N— « and we shall see that the

same is true for y, (for this model).

B. N-random adsorption

Here the dimer adsorption mechanism is such that
after a first empty site is selected randomly, one checks
up to N other randomly located sites on the lattice and
adsorbs the dimer if and when one of these is found to be
empty. In this model, one has Y, (T)=yE and
Y(T)=2(1—y)E[1—(1—E)¥]. The latter quantity can
be obtained exactly in contrast to the N-local adsorption
model. Thus in a steady state, where these rates are
equal, one has exactly

Yy = —_ g\

2(1—y) 1=(=F)

(or E =0 for a poisoned state). This immediately shows
that E —0 continuously, as y —0, in the reactive steady
state, so nontrivial continuous B-poisoning transitions
cannot occur in this model and consequently y; =0 for all
N. One might expect these models to support a discon-
tinuous A-poisoning transition for y <%, as did the N-
local adsorption models. However, below we shall see
that instead they display true bistability for all N, i.e., for
0<y <y, (a spinodal) a stable reactive steady state and
stable A4-poisoned state coexist. The stable A4-poisoned
state at y =0 is joined to the stable reactive state at y =y,
by an unstable steady-state branch to form a van der
Waals type loop. For y >y, only the A-poisoned state is
stable. In the N-—>o limit, we again have
Yp(T)>Y 4(T) for y <%, so it is clear that y,—2 and
that the B coverage of the reactive steady state for any
¥ <% must approach unity as N — .

III. SIMULATION RESULTS
FOR N-LOCAL ADSORPTION MODELS

Our goal is a precise analysis of the vanishing width of
the reactive window as N — oo. This is complicated both
by the presence of a “long-lived” metastable reactive
state just above the discontinuous transition [2,8,13] and
by the presence of large fluctuations at the continuous
transition [12], which could influence behavior across the
entire (narrow) reactive window.
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A. The discontinuous transition: Constant-coverage analysis

We circumvent metastability problems by utilizing a
constant-coverage kinetic ensemble [13] to locate the
transition y,. (The danger is that a conventional simula-
tion will tend to overestimate y, due to strong metastabil-
ity [8].) In conventional simulations, a fixed value of y is
chosen and [ 4] is monitored. In the constant-coverage
ensemble, a fixed value of [A4] is chosen, say, [ 4],
Whenever [ A]<[A], an attempt at A adsorption is
made and whenever [ 4]>[ 4], an attempt at B, adsorp-
tion is made. One obtains y as the asymptotic fraction of
A adsorption attempts to the total number of attempts.
Since the value of [ A] jumps from some typically small
value (less than 0.1) to unity at the discontinuous transi-
tion, by choosing [ 4];=0.5, this guarantees that the as-
sociated y value will correspond to y,. The results are
shown in Table I. These runs were performed on a
300X 300 lattice for 100000 time steps. Note that fluc-
tuations in y are reduced for large N. Here dimer adsorp-
tion is effectively contingent on finding just one empty
site, like monomer adsorption. Thus the situation is simi-
lar to the monomer-monomer model, where we also find
very small fluctuations (about y =1) in a constant-
coverage simulation.

One may ask if there is a sizable dependence of the lo-
cation of the transitions upon the particular geometry of
the prescribed neighborhood of N sites. We determined
the location of the discontinuous transition in the model
for N =8 with a different geometry [nearest neighbors
and third-nearest neighbors; see Fig. 1(b)] and found only
a small variation (about 0.6%) from the location for the
original N =8 geometry shown in Fig. 1(a).

B. The continuous transition: Epidemic analysis

We determine the location of the continuous transition
y; by means of an epidemic analysis [12], wherein one
monitors the evolution of an initially empty patch (in this
case a single site) on an otherwise B-poisoned surface.
We determined the ‘“‘survival probability” P(¢) that the
patch has not become B poisoned at time ¢ for various
values of y. P(t) should saturate at a nonzero asymptotic
value for y >y,, where there is a finite probability of
indefinite growth. However, P(t¢) should decrease ex-

TABLE I. N-local models. Discontinuous A4-poisoning tran-
sition location y,, determined using a constant-coverage
analysis.

N Y2 %_Yz

1 0.525 60 0.14107

4 0.65520 0.01146

8 0.664 39 0.002 27
12 0.665 74 0.000 92
20 0.666 33 0.00033
24 0.666 44 0.00022
28 0.666 52 0.000 15
36 0.666 575 0.000 092
44 0.666 607 8 0.000058 9
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FIG. 2. Epidemic analysis of the survival probability P(#) for the N-local models. Plotted is the local slope —&(¢) vs 1/¢t. Here
the transition y =y, is determined from the requirement that 8(¢)—0.452 as t — .

ponentially for y <y,, where ultimate extinction is cer-
tain. However, at y, the survival probability is expected
to scale like [12] P(t)~t 5 For the ZGB model,
analysis has shown [12] that this transition is in the
universality class of Reggeon field theory (RFT), where
6=0.45210.008. This is also expected to be the case for
all N > 1.

Following Jensen, Fogedby, and Dickman [12], we ex-
amine the local slope

In[P(2)/P(t/5)]
In(5)

As t— 0, the local slope should curve upward (ap-
proaching zero) for y >y, and it should curve downward
(approaching — « ) for y <y,. Aty =y,, the local slope
should converge to the RFT value of 8. The behavior of
6(¢t) for N =1, 4, 8, 12, and 20 is shown in Fig. 2 and the
results are summarized in Table II. Note that if one
writes [12] 8(¢)~0.452+a /t as t—> o, then a changes
from a positive sign when N =1 and to a negative sign for
all N >1. Another quantity of interest is the average
number of empty sites in the patch as a function of time
N(2). It is possible to perform an analysis identical to
that for the survival probability [12]. At the transition,
this quantity is expected to scale like N (¢)~t" with the
RFT 7=0.224+0.010. The behavior for N =12 of the
corresponding local slope 7(t¢), defined analogously to
6(t), is shown in Fig. 3 and is consistent with RFT. The
survival probabilities were calculated using data averaged
over 50 000-150 000 trials.

8(t)=

TABLE II. N-local models. Continuous B-poisoning transi-
tion location y;, determined using an epidemic analysis, and the
associated width of the reactive window obtained also using y,
values from Table 1.

N Y1 Y270
1 0.391 0.135
4 0.633 0.022
8 0.654 0.011

12 0.6610 0.0048

20 0.664 75 0.0016

C. Scaling behavior

We now propose two scaling relations associated with
the dependence of y, and y, on N. For the width of the
reactive window =y, —y,, if we assume that Q~N "¢
for large N, then our data (Fig. 4) indicate that
©=2.1%0.5. For the distance of y, from 2, A=2—y,, if
we assume that A~N ~* for large N, then our data (Fig.
4) indicate that A=2.1+%0.1.

IV. SIMULATION RESULTS FOR N-RANDOM
ADSORPTION MODELS

As mentioned in Sec. III B, we find true bistability in
this model. Results for the van der Waals type loops in
the steady state [ A] versus y are shown in Fig. 5 for
N =1, 2, and 4. The stable branches can be determined
using either a conventional or a constant-coverage simu-
lation, but the unstable branches were necessarily found
using a constant-coverage simulation. We further
checked for bistability by preparing the system slightly

0.4

."A\P‘"’o"’"“"’."l.... 00000 0%%00 0 0

4
w............ .o
4 X X o x X
0.2 o0 XX x X X X x

n(t)
o y=0.6615
0.0 e y=0.6610
x y=0.6605
"0.2 - T T T T 1
0.000 0.002 0.004 0.006 0.008 0.010
11

FIG. 3. Epidemic analysis of the average number of empty
sites N (¢) for the N-local model with N =12. Plotted is the lo-
cal slope 7(t) vs 1/t. Here the transition is determined from the
requirement that 7(¢)—0.224 as t — o0.
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TABLE III. N-random models. Behavior of y(A4,) for
0 A 0= 0.5.
2] N y(A,=0.5) 2—-y(A4,=0.5)
1 1 0.428 12 0.238 54
9 -4 hA 2 054784 0.118 83
- 4 0.62740 0.03926
O -6 8 0.661 17 0.005 49
c o | 12 0.665 81 0.000 86
£ s naA 16 0.666 534 0.000 133
+ InQ 20 0.666 643 4 0.000023 3
-104
0 1 2 3 4
InN N-local model. However, we find somewhat stronger

FIG. 4. Scaling analysis of the N-local model simulation re-
sults for A=2—y, and Q=y,—y,.

above (below) the unstable branch and checking that it
evolved to the poisoned (reactive) state. For the larger N,
[ A] versus y near the spinodal approximates a vertical
line, so the precise determination of y; versus N is
difficult. Thus, instead, we simply run the constant cov-
erage simulation for [ 4],=0.5 and show in Table III the
convergence of the corresponding y =y ([ 4],) values to
2 as N increases. If we assume that A[4,]=3%
—ylAy]l~e MV, then fitting our data indicates that
p=p[ A;]1=0.461+0.03 for [ 4,]=0.5. This dependence
is fundamentally different from behavior of transition lo-
cations in the N-local adsorption models and corresponds
to mean-field-type behavior (see Sec. V). We note that
fluctuations in y in the constant-coverage simulations are
reduced for large N in the N-random model, just as in the

1.0 %

A
| £,8 o Eo‘ o 4
AA OO o a
0.8 22, °o "o
AA 00 a
A ) %
3 % )
% 2
0.6 4 %lé o8
[A] | = N=d R
4 e N=2 0%
047 N=1 3
2 S &
t i
. o -
| A . .S .-
A A ‘.= .: .--
004—s—a——4—¢ ¢ 8 9 8 = 0 7 =~ =

FIG. 5. “Phase diagram” for the N-random models deter-
mined by simulation. Plotted is the steady-state 4 coverage
[A] vs the A4(g)-impingement probability y. The open symbols
indicate the unstable reactive steady-state branch, the solid sym-
bols indicate the stable reactive steady-state branch, and the line
[ A]=1 gives the stable A-poisoned steady state (common to all
N).

finite-size effects in the N-random model: y[ A4,] values
decrease with increasing system size [e.g., by O(1073)
changing from a 500X 500 to a 1000 X 1000 lattice].

It is appropriate to comment on why these models
display true bistability, rather than a discontinuous A-
poisoning transition, for all N. To this end, one might
consider another class of dimer adsorption mechanisms
where after the first empty site is selected, one checks N
others randomly located within a distance L of the first
site. For finite L, one again expects to find a discontinu-
ous transition. However, presumably L determines the
critical size of a nucleus of the stable poisoned (reactive)
state embedded in the metastable reactive (poisoned) state
for impingement rates y above (below) the transition.
Thus as L increases (for fixed N), so does the critical size
and thus so does the lifetime of the metastable state.

V. MEAN-FIELD THEORY

We now present a rate equation analysis for both mod-
els in the mean-field site approximation. Here all spatial
correlations are neglected, so multisite configuration
probabilities simply factorized into products of site prob-
abilities. However, the infinite reaction rate and the
unusual dimer adsorption mechanism in the N-local mod-
el cause some complications. In this discussion, let 4 (B)
also represent the coverage or concentration of 4 (B) on
the surface, and let E represent the fraction of empty
sites. For both species J = A4 and B, it is convenient to
introduce rates for nonreactive (NR) adsorption Y;(NR)
and reactive (R) adsorption (adsorption followed by
instantaneous reaction) Y;(R), as well as the previously
discussed total (7)) adsorption rates Y,(T)=Y,(NR)
+Y;(R). Then the rate equations (for infinite reaction
rate) have the form [14,15]

‘fl—f=YA(NR)—YB(R)=YA(NR)+ Y5(NR)—Y,(T),
dB _ -

In a steady state, one has d A /dt =dB /dt =0 providing
a set of coupled nonlinear algebraic equations for 4 and
B (noting that 4 +B +E =1).

For the Y ’s, in both the N-local and N-random ad-
sorption models, we have
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Y (T)=yE, Y, NR)=yE(1—B)*.

The first result is exact (as noted previously) and the
second simply accounts for the fact that nonreactive A4
adsorption requires that none of the four neighbors of the
adsorption site be occupied by B [producing an extra fac-
tor of (1—B)* in the site approximation]. Next consider
the Yp’s. In both models, we have

Yp(T)=2(1—y)E[1—(1—E)¥] .

This expression is exact for N-random adsorption, as not-
ed above. Clearly there are two contributions to the
filling of an empty site by B: direct adsorption where the
site is selected first by the “bottom atom” in the deposit-
ing dimer and indirect adsorption where the site is select-
ed by the “top atom” in the dimer as a result of searching
N other sites. Clearly, both contributions to Yz(T) are
equal. However, for Y3z(NR), the behavior is model
specific, as detailed below.

8Y5(NRD)=(1—yp)E[(1— A)*—B*] for the first shell
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A. Analysis of N local adsorption models

First we consider separately the case N =1 (the ZGB
model), where direct and indirect contributions to
Y5 (NR) are equal. Here it has been shown that [14,15]

Y3(NR)=2(1—p)EX1—4)*,

which is proportional to the probability of finding an
empty site (accommodating the bottom B atom) sur-
rounded by an empty site (accommodating the top B
atom) and three non-A4 sites (thus avoiding reaction of
the bottom B atom).

In the N-local model for general N corresponding to
some specific number of “shells” (N =4,8,12,...), our
chosen search algorithm allows us to sum cumulatively
contributions to Yz(NR) from each shell, but necessarily
separating distinct contributions from direct [§ Yz (NRD)]
and indirect [6Yy(NRI)] adsorption. We thus obtain

=(1—y)EB*[1—(1—E)*] for the second shell
=(1—y)EB*1—E)*[1—(1—E)*] for the third shell ,

etc. The first-shell contribution accounts for the requirement that no first-shell sites can be occupied by 4, but also that
they cannot all be occupied by B. For second-shell adsorption, all first-shell sites must be occupied by B and at least
one second-shell site must be empty, etc. Similarly, we obtain

8Y5(NRI)=(1—y)E(1— A)*[1—(1—E)*] for the first shell
=(1—y)E(1—E)’B*1— A4)*[1—(1—E)*] for the second shell
=(1—y)E(1—E)B(1— A4)*[1—(1—E)*] for the third shell ,

etc. For the first-shell contribution, one requires the in-
directly filled site of interest to be empty, one of its four
neighbors (the direct adsorption site) to be empty, and
the other three not be filled by 4 (denoted by A’ in Fig.
6). One then sums over all possible states of the other
three sites (denoted by an asterisk in Fig. 6) neighboring
the direct adsorption site, weighting by the probability
that the top atom selects the empty site of interest to fill
indirectly. Performing this sum (see Fig. 6) yields the
above expression, which can also be understood as fol-
lows. Pick the site of interest to be filled indirectly. As
noted above, one of the four neighbors must be the direct
adsorption site and must be empty, contributing a factor

A x
’ _ 32N __L_ 3 m(1_ gy,
A E E * 8Y,(NRI)=4A"E z”"“m+l(mJE (1-E)
A" x

FIG. 6. Determination of the first-shell contribution to
8Yp(NRI). The direct (indirect) adsorption site is the empty site
on the right (left). The sum determines the indirect B-
adsorption rate on the left E site, accounting for all possible
configurations of the 4 sites. If m of these are E, and thus 3—m
are A or B, the probability that indirect adsorption occurs on
the left E siteis 1/(m +1). Here A’ means “not” A.

of 4E; the other neighbors cannot be occupied by 4, con-
tributing a factor of (1— A4)>. In order for the top B
atom to land, at least one of the neighbors of the direct
adsorption site must be empty, contributing a factor
{1—(1—E)*}. There is a probability of L that this neigh-
bor is the site of interest. Contributions to Yy from in-
direct filling of other shells can be understood similarly.

Figure 7(a) shows mean-field predictions for the steady
state [ 4] versus y, for three N values, using above expres-
sions for adsorption rates. These predict qualitatively
correct behavior, apart from the expected absence of a
continuous B poisoning. The location of the spinodals in
the N=1 (ZGB), N=4, and N =8 models are
s=0.561012 (cf. Ref. [14]), 0.663 667, and 0.666 629, re-
spectively.

B. Analysis of N random adsorption models

For dimer adsorption on an infinite lattice, the two B’s
will land on infinitely separated randomly selected sites.
Clearly the probability that either will react is the same
and therefore the direct and indirect contributions to Y
are equal. The only difference from the total rate is that
we must multiply by the probability that there are no A4’s
on the four nearest neighbors of the adsorbed B. There-
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FIG. 7. Mean-field “phase diagrams.” Plotted are the
steady-state A coverage [ A] vs the A (g)-impingement proba-
bility y. (a) N-local models for N =1, 4, and 8. (b) N-random
models for N =1, 2, 4, and 8.

fore the nonreactive rate for the B is
Y3(NR)=2(1—p)E[1—(1—E))(1— 4)*.

Figure 7(b) shows mean-field predictions for the steady
state [ 4] versus y for three N values, using the above ex-
pressions for adsorption rates. Qualitatively correct
behavior is predicted. The values for the spinodals are
ys=0.57691, 0.64253, 0.66437, and 0.6666433 for
N =1, 2, 4, and 8, respectively.

C. Asymptotic behavior for large N

Now we will show that mean-field predictions for the
spinodal location (in both models) have a deviation from
2 that decreases exponentially with N. It is convenient to
analyze the behavior of y for fixed 4 = 4,, with corre-
sponding E =E,. Since Y 4(T)=Yy(T), one has

y=3[1-3(1-Ey)"]

for large N and 0<E,;<1. Then, solving for A=2—y,

we have A~e "N as N 0, where u=—In(1—E,)>0.
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Thus we have exponential decay provided 0<E;<1,
which presumably applies to the spinodal. Furthermore,
for the N-random model, we can obtain simply an exact
expression for the decay rate. In the steady state here, we
have

dA

—— =yE(A+E)*
ar YE( )

+2(1—p)E[1—(1—E)¥][(1— 4)*—1]=0.
Letting N — o and y — %, we have for the steady state
(Ag+E)*=1—(1—4,),

which has a solution E,, satisfying 0<E, <1, for any 4,
between zero and one. Solving for 1 —E,, we obtain

p=—In{1+ do—[1—(1— 4y)*]'/4} .

The maximum decay rate, corresponding to the
spinodal, occurs at A,=1—2"14=0.159, yielding
p=—In(2—23%)=~1.145.

VI. CONCLUSIONS

We have provided a detailed analysis of the influence of
the dimer adsorption mechanism on reactivity in the
diffusionless monomer-dimer surface reaction model.
First, we let the dimer sample N sites in a Jocal neighbor-
hood of a randomly selected empty site in order to find a
second empty site allowing adsorption. We find that the
width of the reactive window between poisoning transi-
tions decreases continuously like N ~21%05 and shifts to-
wards the stoichiometric value of the relative impinge-
ment rates (y =§) like N ~2140.1 Instead, letting the di-
mer sample N other randomly chosen sites produces true
bistability. Now the spinodal approaches y =% exponen-
tially, corresponding to mean-field-type behavior.
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